
The “Software = Code + Data” 3.0 Era

Daniel Huang, Base26

June 2025

1 Introduction

Technology—from the software on our computers to the artificial intelligence
(AI) and robotics powering a Waymo car—is fundamentally reshaping our lives.
We can now have complex conversations with Large Language Models (LLMs)
and ride through San Francisco’s winding streets without a human driver. Yet
the promise of technology hinges on converting the unruly, unpredictable phys-
ical world into digital data that machines can understand. But can the real
world ever be truly digitized? And how do today’s advances build on century-
old principles of computer science? We will structure our exploration as a series
of questions.

1. What underpins digital technology (Section 2)? We review Turing Ma-
chines—the simple yet powerful theoretical devices that define computation—
laying the groundwork for digital information processing at a speed and
scale impossible in the physical world.

2. Are we creating digital twins or digital zombies (Section 3)? We examine
why our “digital twins” are often incomplete reflections of reality—more
like “digital zombies”—by exploring three key challenges: discretization,
complexity, and completeness. This is why one could say that “software
is eating the world,” albeit with some indigestion.

3. How is AI different from conventional software (Section 4)? We explore
the idea that conventional software and AI occupy opposite ends of the
Software = Code + Data spectrum. Whereas conventional software is
99% code and 1% data (i.e., code heavy or Software 1.01), AI is 1% code
and 99% data (i.e., data heavy or Software 2.01), opening fundamental
new possibilities for solving problems.

4. What does the future hold for technology (Section 5)? We imagine how
the emergence of LLMs points to a Software = Code + Data 3.01 era,
enabling us to creatively explore the messy middle between code-heavy
and data-heavy systems.

1We are borrowing Andrej Kaparthy’s terminology: Software 1.0 is code-heavy, Software
2.0 is data-heavy software, and Software 3.0 is the spectrum in between enabled by the
emergence of LLMs.

1



2 The Nature of Digitization: From Messy Re-
ality to Perfect Rules

What underpins digital technology? To answer our first question, we must begin
at the very foundation of modern computing. The journey from a physical
world to a digital one starts not with silicon chips, but with a theoretical device
conceived nearly a century ago.

2.1 Turing Machines: What is a Computer?

This device is the Turing Machine (TM). Conceived by the British mathemati-
cian Alan Turing, the TM is a device designed to study computation. Turing
developed this idea in 1936, nearly a decade before John von Neumann would
outline the practical architecture of a digital computer—the von Neumann ar-
chitecture—consisting of a central processing unit (CPU) and memory.

A TM consists of three core components. First is an infinite piece of graph
paper (i.e., tape) that serves as the machine’s scratchpad (memory). Each in-
dividual cell is labeled with its coordinates. Second is a stylus (i.e., head), like
a pencil with an eraser, that can read a symbol from a cell, write a new one,
and move in the coordinate plane of the graph paper. Finally, there is a finite
set of instructions—a rule book—that dictates the stylus’s actions that serves
as the machine’s code (i.e., program). An instruction, for instance, might state:
“If the current cell is blank, write the symbol 1 and move one cell to the right.
Then, proceed to instruction #42.”

A computation is the mechanical execution of these instructions, starting
from instruction #1, until the machine encounters a HALT instruction. The
input and output of a TM computation can be written on designated parts of
its scratchpad.

It seems almost absurd that this simple device—which you could implement
with a long strip of paper and a very patient rule book follower—captures every-
thing from rendering video games to solving protein folding. After all, can this
simple and mechanistic process truly define the entire universe of computation?
As it turns out, the Church-Turing thesis answers this in the affirmative. It
states that anything that can be effectively computed by any means can also be
computed by a TM.2 Another way to frame this is that the choice of program-
ming language does not matter, at least theoretically speaking. Thus, all roads
lead back to paper, pencil, and a rule book.

2.2 The Universal Machine: Code = Data

Since we described a TM as a physical machine with a specific rule book, we
might wonder if we need to build a different machine for each task. Fortunately,
we do not have to, thanks to the idea of a Universal Turing Machine (UTM).

2At the risk of getting somewhat technical, this is the set of (partial) functions Σ∗ ⇀ Σ∗

where Σ∗ is the set of finite words over a set of finite symbols from Σ.

2



A UTM is a TM that can simulate any other TM. Its existence relies on the
following observation: the description of any other machine—its rule book—
can be written onto the tape and fed to the UTM as input. The UTM then
reads this data—another TM’s code—and simulates the machine it describes.
In other words, the UTM treats the rule book not as fixed hardware, but as
software—data that can be executed as code. This establishes a simple yet
profound proposition:

Code = Data .

This equivalence is what makes a computer a general-purpose tool. A single
piece of hardware implementing a UTM can execute any program because its
code can be treated as data for it to execute.

2.3 Computability: What a Computer Can (and Cannot)
Do

The principle that Code = Data is stunningly powerful. It might even lead us
to believe that computation is limitless, since each rule book can be arbitrarily
complex. However, a startling realization emerged alongside the very theory
of computation: some problems, while clearly describable, can never be solved.
Such problems are called undecidable.

The most famous of these is the Halting problem. The problem asks: is it
possible to write a single program that can analyze the source code of any other
program and predict with absolute certainty whether that program will eventu-
ally halt or run forever given an input? The impossibility of solving the Halting
problem relies on the paradox of self-reference enabled by the equivalence of
code and data.

To see why, imagine such a program, Halts, existed. We could then use it
to construct another mischievous program called Paradox to demonstrate that
such a program can only exist in our imagination. Paradox is designed to do the
exact opposite of what Program would do when fed itself as input—remember
that Code = Data so we can both treat Program as both code and input data.
If Program halts on its own code, Paradox(Program) enters an infinite loop;
if Program loops on its own code, Paradox(Program) immediately halts.3 The
logical trap is sprung when we ask the critical question: what happens if we run
Paradox on itself, i.e., Paradox(Paradox)?4

1. If Paradox is supposed to halt, its own logic dictates that it must loop.

2. If Paradox is supposed to loop, its own logic dictates that it must halt.

This impossibility forces us to conclude that our initial assumption was wrong.

3This technique is a variation of diagonalization. Given an infinite table whose rows and
columns are labeled by programs, and cells indicate whether the program in that row halts
on the input given by the column, Paradox does the opposite along the diagonal of this table.

4The intersection of the Paradox row and Paradox column in the infinite table reveals a
contradiction.

3



The undecidability of the Halting Problem carries an essential message: com-
putation has absolute, knowable limits. Consequently, even before we get to
practical concerns like speed or memory, we find that some problems by their
very nature elude digitization.

3 Digital Twins or Digital Zombies?

Armed with the fundamentals of TMs, we can now examine digitization: the
construction of digital models of everything physical from maps of cities to
simulations of natural processes. However, the very act of translating reality into
the discrete symbols of a computer forces a series of compromises—compromises
that can corrupt the model, raising a critical question: are we creating digital
twins or merely digital zombies?

3.1 Discretization Challenges

The first challenge we encounter when translating real-world phenomena into
digital form is discretization. At its core, a computer operates on discrete sym-
bols, like 0 and 1. By contrast, the world we aim to model is often continuous.
Consequently, we must translate these real-world objects and phenomenon into
symbols. This problem might seem trivial at first, but consider a simple object:
a one-foot by one-foot floor tile.

While its side length is easily represented by the number 1, its diagonal
measures

√
2. How can a computer store this number? The problem is that√

2 is irrational, possessing an infinite, non-repeating decimal representation
(1.41421356...). We are immediately forced to make a choice: we could truncate
the number, storing only a finite number of decimal places. Or we could include
a symbol for

√
· and write additional software to handle computations with this

extra symbol.5

While the truncation approach for a floor tile would likely be harmless in an
e-commerce application, the same limitation becomes critical in scientific com-
puting, aeronautics, or financial modeling, where the smallest rounding errors
can cascade and compound. Thus, this simple example reveals a fundamental
crack in the concept of a perfect digital twin. The computer must work with an
approximation, not the true value.

3.2 Completeness Challenges

Discretization forces us to accept that our digital models are approximations.
However, a second, deeper challenge arises when digitization forces us to con-
front undecidable problems. This may seem like a purely theoretical concern,
but as it turns out, our smartphones navigate this challenge every day.

5There is a third option: work with computable reals encoded as infinite streams of num-
bers. However, the computability and complexity theory is less standard and nice. In partic-
ular, the Church-Turing thesis no longer holds.

4



A phone’s operating system (OS) constantly manages other programs—the
browser, email client, and camera app. Occasionally, some apps may hang.
What should the OS do? In truth, the undecidability of the Halting problem
demonstrates the OS cannot know for certain whether an app is in an infinite
loop or just performing a very long calculation. The system doesn’t try to
solve this unsolvable problem. Instead, it has an escape hatch: you, the user.
When a program becomes unresponsive, you act as an external agent, deciding
to force-quit the application or restart the phone.

This need for a human “escape hatch” in computing points to a deeper
truth about the limits of formal systems. Our solutions for complex, real-world
challenges are often necessarily incomplete. This insight is formalized by Gödel’s
incompleteness theorems. In the 1930s, Kurt Gödel proved that any sufficiently
powerful mathematical system6 will contain true statements that cannot be
proven within that system.7 Just as our OS needs an external user to handle
a hanging app, formal systems often require a perspective outside the system
to grasp their full truth. In our quest to model the world, we inevitably create
digital and logical abstractions that, by their very nature, cannot be perfectly
complete.

3.3 Hard Complexity Challenges

Even if a problem can be perfectly digitized and is decidable—that is, solvable
in principle—it may still be impractical if the answer takes a billion years to
compute. This is where complexity theory comes in. It provides a framework
for distinguishing between problems that are computationally “easy” and those
that are “hard”.

Problems considered easy belong to a class called P (for polynomial time).
Many problems considered hard, however, belong to a class called NP (for non-
deterministic polynomial time), the hardest being called NP-complete.8 The
key difference can be understood by comparing the act of finding a solution
to the act of verifying one. Consider a complex Sudoku puzzle: trying to find
the solution could take many hours and/or hints. Yet, if someone hands you
a completed puzzle, you can verify that it is correct in minutes. This gulf
between the difficulty of finding a solution and the ease of checking one is the
core intuition behind the P versus NP question, one of the most famous open
problems in computer science.9

6The canonical system is Peano arithmetic which describes arithmetic on natural (i.e.,
counting) numbers.

7Peano arithmetic is powerful enough to encode the operation of TMs since each TM’s
description can be encoded as a number (e.g., with Gödel numberings). This is yet another
version of Code = Data.

8The introduction of complexity theory enables us define the strong Church-Turing thesis:
all other models of computation can be easily simulated by a TM, i.e., in time P. Quantum
computation may provide a counter-example to the strong Church-Turing thesis.

9While the question remains open, virtually every computer scientist believes that P does
not equal NP, matching our experience that finding a solution is more difficult than verifying
one.

5



Unfortunately, many of the most valuable real-world optimization problems—
in logistics, finance, engineering, and drug discovery are NP-complete. For these
problems, we cannot find optimal solutions in any reasonable amount of time.
We must instead rely on approximations, heuristics, and “good enough” an-
swers. This computational hardness means that even a perfectly discretized
model can become a “digital zombie”—a model that looks right but is too com-
plex to manipulate meaningfully.

3.4 Easy Complexity Challenges

But the challenges don’t stop with problems that are theoretically hard. Con-
sider those that are, in principle, easy. A prime example comes from computa-
tional chemistry, where determining the ground state energy10 of a system of
atoms—a task that could help revolutionize materials and drug discovery—is
known to be computationally hard.11 To overcome this, scientists found clever
workarounds: approximation algorithms that complexity theory considers easy
because they run in polynomial time (class P). The catch: easy in theory can
still be impossibly hard in practice.

To get a feel for the complexity of P, suppose after a long dinner, you forget
where you parked your car on a street with N parking spaces. In the worst case,
you must search all N spots—a linear, one-dimensional search. This is inconve-
nient but manageable. Now, let’s extend this to a two-dimensional parking grid
with N rows and N columns. The worst-case search is now N2 spaces. Finally,
imagine a multi-story parking garage with N floors, each with an N×N parking
grid. The search balloons to N3 spaces. This already feels practically impossible
for a large N . However, from a theoretical standpoint, all three scenarios—with
runtimes searching for your car are proportional to N1, N2, and N3—are in P.

Some of the best approximation algorithms for the ground state problem
have runtimes with high-order polynomials (like N5 or N7), making even the
three-dimensional garage search seem trivial in comparison. These algorithms
require supercomputers running for weeks, and yet, they are only producing
approximations of the true answer. Alas, being theoretically easy is often times
practically hard.

4 The Code-Data Spectrum

In spite of the theoretical limits established at the dawn of computing, tech-
nological innovation has marched relentlessly forward. Human ingenuity has
yielded practical solutions—or at least clever workarounds—for many of these
impossible, hard, and even deceptively easy problems. Yet many challenges still

10Nature prefers lower-energy configurations which are more stable.
11In fact, it is hard even for a quantum computer even though atomistic interactions are

described by quantum mechanics. It belongs to class QMA-complete, the quantum analog of
NP-complete. Additionally, class BQP, the quantum analog of P, is conjectured to be incom-
parable to NP-complete.

6



elude us. This brings us to the current technological moment: AI, which is
enabling us to solve problems we could not solve before. This raises the ques-
tion: How is AI different from conventional software? The answer is that AI is
software, but it represents a radical departure in design.

4.1 The Two Faces of Software: Code and Data

The idea that Code = Data is profound but abstract. In practice, conventional
software treats them as distinct components, a relationship better captured by
the equation:

Software = Code + Data .

Here, Code represents the instructions written by engineers, while Data is the
information the code acts upon, often stored separately in databases or files and
accessed through queries. This framework is particularly useful for understand-
ing Good Old-Fashioned AI (GOFAI), the dominant paradigm in the decades
before the current AI revolution (i.e., deep learning). The approach involved
domain experts collaborating with engineers to translate their knowledge into
programmatic rules. The resulting AI was effectively 99% code and 1% data
since the richness of the expert’s experience had been distilled into logical rules.

The chess program Deep Blue is a powerful demonstration of this approach.
Grandmasters worked with scientists and engineers to distill their expertise into
a sophisticated evaluation function, a complex piece of code that could score
the strength of any given board position. Paired with brute-force search, this
method was sufficient to defeat world champion Garry Kasparov in 1997. Deep
Blue was the pinnacle of the code-heavy paradigm, but its victory also high-
lighted its limitations: its intelligence was narrow, handcrafted, and incapable
of learning on its own.

4.2 The Data-Heavy Revolution

The deep learning revolution flipped the GOFAI paradigm on its head. Instead
of using human experts to distill data into code, the new approach uses a small
amount of code to allow the data itself to be “programmed” into the weights of
a neural network. This relationship can be expressed as:

Neural Network = Inference Code + (Training Code + Data) .

While GOFAI was 99% code and 1% data, this new approach describes software
where the code is minimal and the data is large. Following Andrej Kaparthy,
we might call this Software 2.0.

Deep learning-based algorithms have enabled solutions to many problems
previously intractable with code-heavy approaches, including image classifica-
tion, the game of Go, and protein folding. But what enables this approach to go
beyond that of conventional software? On the surface, the answer is that deep
learning provides a practical way to build data-heavy software. To go deeper,
we can turn to information theory and its algorithmic counterpart.

7



4.3 Information

Information theory, first proposed by Claude Shannon in 1948, provides a math-
ematical framework for quantifying information. Its fundamental unit of mea-
surement is the bit, representing the resolution of uncertainty between two
equally probable outcomes, labeled 0 and 1. The theory’s central insight is
that information is a measure of surprise or unpredictability. A predictable
sequence of symbols contains very little information whereas a highly unpre-
dictable sequence contains more.

For example, a uniform pattern such as 00000000 is highly predictable—its
low probability of being anything other than a 0 at any given position means that
observing the sequence does little to reduce an observer’s surprise. Conversely,
a less predictable pattern like 01101001 contains more information. Because
each symbol in the sequence could plausibly be a 0 or a 1, the final pattern
presents a greater degree of uncertainty.

The binary nature of a bit is the foundation of the base-2 system used in
all digital computing. While a single bit can only distinguish between two
possibilities, sequences of bits can be used to represent an exponentially larger
set of outcomes. For instance, in the 8-bit ASCII standard, the capital letter A
is represented by the sequence of bits 01000001—its codeword.

By assigning a codeword to each element in a set of possibilities, we produce
a codebook : a complete mapping of symbols to their unique codewords. This
codebook acts as a language which we use to describe patterns in data. The key
insight is that a good codebook compresses information—patterns that occur
frequently can be assigned shorter codewords since they are less surprising.

4.4 Algorithmic Information

What if, instead of a fixed codebook like ASCII, a program itself could serve
as the codebook? Algorithmic Information Theory (AIT) offers this more uni-
versal perspective by merging information theory with computation. It defines
the complexity of a sequence—its Kolmogorov complexity—as the length of the
shortest computer program that can produce it.12 A sequence of a million zeros
has low Kolmogorov complexity since we can write a short loop to generate
it. In contrast, a truly random sequence has high complexity, as its shortest
description is the sequence itself.

However, true Kolmogorov complexity is incomputable—we can never be
certain that a given program is the absolute shortest one possible. This is
where the practical principle of Minimum Description Length (MDL) becomes
invaluable. MDL asserts that the best model for a sequence is the one that
minimizes the sum of two terms: the length of the description of the model
itself—its codebook—and the length of the sequence when encoded using that
model. The trade-off between these two terms is a direct embodiment ofOccam’s
Razor : a simpler explanation is preferred over a more complex one.

12By the Church-Turing thesis, the choice of programming language does not matter.

8



While the precise theoretical underpinnings of deep learning are still an ac-
tive area of research, the MDL principle provides a powerful lens through which
to view it. The training process can be interpreted as a sophisticated search for
a compressed representation of patterns in the data. The crucial insight is that
a neural network’s architecture and weights constitute its codebook. Just as a
programming language determines what programs can be written, the learned
codebook determines what patterns can be expressed, ideally forming an effi-
cient “programming language” for the patterns inherent in the data.

This principle is clearly illustrated by comparing modern neural networks to
earlier AI systems. Whereas Deep Blue’s programmers painstakingly encoded
human chess knowledge into an explicit codebook of rules, a neural network
discovers its codebook implicitly from data. It must balance two competing
pressures: having enough complexity to capture the underlying patterns in the
data, but not so much complexity that the model itself becomes a lengthy,
over-specified description. This perspective brings the exploration full circle,
returning to the concept that Software = Code + Data—Software 2.0 does not
eliminate code; it hides it in the weights learned from data.

5 The “Software = Code + Data” 3.0 Revolu-
tion

What does the future hold for technology? In this final section, we examine how
the emergence of LLMs points to a Software = Code + Data 3.0 revolution.
We are now entering the messy, yet exciting middle ground between code-heavy
and data-heavy systems.

5.1 Large Language Models

Large Language Models (LLMs), such as ChatGPT, are now used by hundreds of
millions of people today. While the complexity of building LLMs are astounding,
we can abstract their core components in our framework as follows:

LLM = ((Training Code + Transformer + Web) + Inference Code) .

Consequently, an LLM can be described as 0.01% code and 99.99% data—an
exceptionally data-heavy piece of software—due to its training on web-scale
data. However, this description fails to capture the dynamic interactivity that
makes these models so compelling. This quality stems from two key properties:
their auto-regressive and stochastic natures.

The auto-regressive property gives LLMs a self-referential flavor. Once the
model is prompted (<bos>), it produces an output token which is appended to
the input sequence to create a new, longer input. This new sequence is then
used to generate the next token, continuing until a stopping condition is met
(<eos> token). The table below illustrates this step-by-step generation of the
phrase Software = Code + Data.

9



time output input
0 Software <bos>
1 = <bos>Software
2 Code <bos>Software =
3 + <bos>Software = Code

4 Data <bos>Software = Code +

5 <eos> <bos>Software = Code + Data
This self-consuming loop, where the model’s output is continuously appended
to its input, is what creates everything from a single sentence to the illusion of
a multi-turn conversation.

The second key property is that LLMs are stochastic. Their non-deterministic
nature means that they do not produce the same output every time for a given
input. That is, instead of deterministically selecting the next best token, the
model rolls a weighted die to choose from a range of options. At first glance,
the addition of this randomness may seem to take LLMs out of the realm of
standard computation with TM. However, this is not the case.

The theoretical model for this is the Probabilistic Turing Machine (PTM),
a TM that includes a dedicated tape pre-filled with the results of random coin
flips. Whenever the machine needs to make a random choice, it simply reads
the next dice roll from this tape. In practice, this random tape is simulated by
a pseudo-random number generator—a deterministic algorithm that produces
sequences that appear random.13 Suffice it to say, a PTM adds no additional
computational power to a TM. But it is precisely this managed non-determinism
coupled with self-reference that gives LLMs their dynamic and interactive qual-
ities.

5.2 What’s Old is New

This interactivity is most apparent in how an LLM acts as a “meta-prompter”,
producing responses that are themselves prompts. This hints at a form of meta-
programming—a program that operates on programs—and connects the newest
technology to a concept in computer science that has been there since the be-
ginning: Code = Data. What’s old is new again, with a twist:

Prompt = Data = Code .

The most immediate application of using prompts to generate code is that it
can aid human software engineers in developing software—vibe coding. The next
logical step is to interface and interleave LLMs with conventional software—AI
agents and other human-in-the-loop systems. More speculatively, can an LLM
be prompted to improve its own implementation, thus modifying its own code?
This leads to the tantalizing idea of recursive self-improvement.

Could this process continue infinitely? Our journey through the theory of
computation provides a definitive answer: no. Just as data has a point of

13Pseudo-random number generators have many other practical applications, most notably
in cryptography.

10



maximum compression, any program—including an LLM’s own source code—is
fundamentally limited by its own incompressibility. Yet, the gap between where
we are today and that theoretical (uncomputable) boundary is immense, leaving
a vast and unpredictable landscape for transformation.

The most profound innovations will not come from pursuing “more data” or
“better code” in isolation, but from creatively exploring the spectrum between
them. The journey from using “English as a programming language”—code
written in base-2614—to self-improving systems shows that the lines between
programmer and prompter, code and data, are blurring. We are venturing
boldly into the Software = Code + Data 3.0 era.

14For simplicity, we are referring to the 26 letters of the English alphabet, without regard
to case, numbers, or punctuation.

11


